Search results for "Growth Cones"
showing 10 items of 11 documents
Expression of MAP1a and MAP1b in the ganglionic eminence and the internal capsule of the human fetal brain.
2001
The expression of microtubule-associated proteins 1a and 1b (MAP1a and 1b) were investigated in two transient structures, the ganglionic eminence (GE) being a prominent part of the telencephalic proliferative zone and the perireticular nucleus (PR) within the internal capsule (IC). Anti-MAP1a immunolabels PR neurons from 18 weeks of gestation (wg) onwards, whereas anti-MAP1b immunolabels long IC fibers between 18 and 22 wg. MAP1b is further present in thalamic fibers that seem to terminate at the medial margin of the GE, in a moderate number of cells of the GE and its medial extension, the gangliothalamic body (GTB). From 26 to 33 wg MAP1b is expressed in short fiber bundles of the IC, a fe…
Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling
2016
Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…
Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline
2002
AbstractAxon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends…
The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.
2015
The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling o…
CRMP-4 expression in the adult cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica.
2002
The control of neuritogenesis is crucial for the development, maturation and regeneration of the nervous system. The collapsin response-mediated protein 4 (CRMP-4) is a member of a family of proteins that are involved in neuronal differentiation and axonal outgrowth. In rodents, this protein is expressed in recently generated neurons such as some granule neurons of the dentate gyrus, as well as in certain differentiated neurons undergoing neurite outgrowth or synaptogenesis during adulthood. Since CRMP-4 protein appears to be highly conserved throughout the evolutionary scale, we have used immunocytochemistry to study its distribution in the lizard cerebral cortex. We have found pronounced …
3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis.
2005
The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all th…
Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration
2020
After trauma, regeneration of adult CNS axons is abortive, causing devastating neurologic deficits. Despite progress in rehabilitative care, there is no effective treatment that stimulates axonal growth following injury. Using models with different regenerative capacities, followed by gain- and loss-of-function analysis, we identified profilin 1 (Pfn1) as a coordinator of actin and microtubules (MTs), powering axonal growth and regeneration. In growth cones, Pfn1 increased actin retrograde flow, MT growth speed, and invasion of filopodia by MTs, orchestrating cytoskeletal dynamics toward axonal growth. In vitro, active Pfn1 promoted MT growth in a formin-dependent manner, whereas localizati…
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders
2020
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures wi…
Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity
2007
The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB 1 cannabinoid receptors (CB 1 Rs) are enriched in the axonal growth cones of γ-aminobutyric acid–containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB 1 R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB 1 Rs, identify endoc…
Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites
2005
The transmembrane form of agrin (TM-agrin) is primarily expressed in the CNS, particularly on neurites. To analyze its function, we clustered TM-agrin on neurons using anti-agrin antibodies. On axons from the chick CNS and PNS as well as on axons and dendrites from mouse hippocampal neurons anti-agrin antibodies induced the dose- and time-dependent formation of numerous filopodia-like processes. The processes appeared within minutes after antibody addition and contained a complex cytoskeleton. Formation of processes required calcium, could be inhibited by cytochalasine D, but was not influenced by staurosporine, heparin or pervanadate. Time-lapse video microscopy revealed that the processes…